Carapace
 an organic motion sculpture

sample

Important information:

McMaster Carr, a supplier whose part numbers are referenced throughout this document, can only ship within the United States. Builders outside of the U.S. must find an alternate supplier for the required hardware.

Hardware part numbers and availability are subject to change. Verify that all hardware or equivalents are obtainable prior to purchasing these plans.

design by Derek Hugger

The Basics

Contents

These plans include all the information required to build Carapace. They provide an outline of the build process, tips for an accurate and successful build, lists of required tools and off-the-shelf components, a complete parts list, full scale patterns for all plywood parts, and step-by-step assembly instructions.

Before Building

Read and understand all instructions before building. Failure to do so will lead to increased frustration levels, lengthened build times, wasted material, and other vexing occurrences.

Build Process

Always wear eye protection and any other necessary personal protective gear. Read, understand, and abide by all manufacturer instructions and warnings for all tools used.

1. Use a light duty/general purpose spray adhesive to temporarily bond the patterns to plywood. Apply the adhesive evenly and sparingly.
2. Drill the holes first, and then cut out the parts. Hole alignment between parts is critical to proper function, so care must be taken to drill the holes accurately. Take time to cut out the parts accurately. An accurately cut part will require less sanding and less modification later.
3. Remove the patterns from the cut plywood parts, and then sand the parts to remove rough edges and any residual adhesive.
4. Following the assembly instructions, build all subassemblies and then the Top Level Assembly. While assembling, cut and tap all aluminum tubes, brass tubes, and stainless steel as required. See Plywood Thickness Compensation in Tips + Tactics.
5. If desired, disassemble Carapace to finish its components. Note that stain and other finish options can affect the thickness of parts and may also affect friction levels between moving parts.

Notes

When printing the patterns, always print at 100% scale. Do not use the "scale to fit page" option.
Carapace contains many moving wood parts as well as wood parts that stack onto one another. As such, using a quality, flat Baltic birch plywood is very important. Cheaper, lower quality plywood, such as types often found at home improvement stores like Home Depot, can be warped and knotted.

Changing humidity levels can cause wood parts to swell and move. Some binding or changes in performance may occur with changes in humidity. As humidity levels return to normal, so too should the system's performance.

Terms of Use

© 2018 Derek Hugger. All Rights Reserved.
By purchasing these plans, you have agreed to the following terms and conditions:
Purchasing Derek Hugger's plans grants license to the plan purchaser to recreate the copyrighted artwork documented within the plans. Any sculpture or artwork, partial or complete, created from the information provided in the plans is for personal use only, may not be sold for profit, and may not be used for any commercial or institutional purposes without explicit written consent from the author and copyright holder. Physical printed copies of the plans may be made for the purchaser for his or her own personal use only. The plans in digital form or in printed form, whether partial or complete, may not be redistributed, may not be resold, and may not be used in any other work or publication. The contents of the plans are presented in good faith but without warranty and without guaranteed results.

Drivers

metal lathe
 cnc router**

tube cutter

reamers
$0.0650^{\prime \prime}, 0.1280^{\prime \prime}, 0.2530^{\prime \prime}$

kitchen scale or balance

* For drilling and tapping into stainless steel, cobalt steel drill bits and taps are required.
** A CNC router is an optional replacement for the bandsaw and scroll saw for cutting the plywood parts.

Tips + Tactics

Pattern Syntax

Patterns are labeled with a part name followed by a thickness dimension.
Example: Gear D is cut from 3/8" plywood. It also has a hole to be drilled thru with a 9/32" bit.

Straight dashed lines indicate a hole drilled from the side, centered on the thickness of the part.
Example: Front Flipper Link A has a 9/64" hole drilled from the side. It also has a $1 / 16^{\prime \prime}$ thru hole and a $1 / 4^{\prime \prime}$ thru hole drilled from the front.

Two concentric circles indicate a hole with a counterbore.
Example: Gear Link E has two $3 / 32^{\prime \prime}$ holes, each with a $3 / 16^{\prime \prime}$ counterbore drilled $3 / 32^{\prime \prime}$ deep. It also has a $9 / 32^{\prime \prime}$ thru hole.

Two concentric circles with a dotted outer circle indicate a hole with a counterbore drilled from the back side of the part.
The hole callout will also say "(back)" next to it.
Example: See Moving Frame B (too large to show on this page).
When a part name is followed by "(back)", this indicates the part is shown from its back side.
Example: See Moving Frame A (too large to show on this page).

Plywood Thickness Compensation

The exact thickness of plywood is typically thinner than the plywood's specification. For example, $1 / 4$ " plywood may actually measure 0.23 " thick. Because of this, it may be necessary to adjust the lengths of many of Carapace's metal components. To save time and reduce the reworking of metal parts, cut the metal parts after cutting and measuring the thickness of their mating wood parts.

Tapping

Many of Carapace's metal tubes must be tapped for an 8 - 32 thread. Expand the $0.12^{\prime \prime}$ inner diameter holes with a \#29 drill bit before tapping the threads. When tapping the stainless steel tubes, cobalt steel drill bits and taps must be used. Standard HSS drill bits and taps that are found at most hardware stores are not hard enough to cut stainless steel, and they will likely dull and break when used on stainless steel.

When tapping the metal tubes, use plenty of lubricant. Never force the tap; if it feels like it's going to break, it probably will. For every $1 / 2$ to $3 / 4$ turn the tap advances into the metal tube, back it out about $1 / 4$ turn. Repeat this process until the tube is threaded to the desired depth - advance a bit, then back out a bit, advance a bit, then back out a bit.

Hypocycloid Tuning

Carapace has two sets of hypocycloid reducers, and each component of those two sets must be cut accurately in order to function properly. Virtually no force is required to drive the Hypocycloid Gears or their mating Cam Wheel assemblies when they are built properly. If any part of a hypocycloid reduction system is binding or if unnecessary friction is occurring, do the following:

- Ensure the holes for the Rods were drilled accurately. Position and perpendicularity are both important for minimizing friction and binding.
- Ensure the outer profile of the Hypocycloid Gear is smooth and accurately cut, with no bumps or divots.
- If a hypocycloid cam does not rotate freely within its hypocycloid gear, evenly sand the perimeter surface of the hypocycloid cam until it can rotate freely. Do not over sand, as doing so can lead to a significant amount of play in the system, which can affect the timing of the moving components.
- If the Cam Stack Asm's rods are binding or causing unnecessary friction with its mating hypocycloid gear, evenly sand the four outer holes of the hypocycloid gear until the binding stops. Do not over sand, as doing so can lead to a significant amount of play in the system, which can affect the timing of the moving components.

Assembly Tuning + Friction

Through most of Carapace's motion cycle, roughly $1-2$ in-lbs of torque is required to turn the Crank Wheel and drive the system. At certain times, particularly when it is moving upward, a torque of 3-3.5 in-lbs may be required. However, turning the Crank Wheel must never require more than 4 in-lbs of torque. If it does, there may be some binding or excessive friction in the system. Reduce the torque needed to drive the system by ensuring that:

- all bearings are free to rotate without binding.
- all wooden surfaces that contact bearings are smooth and free of bumps and divots.
- all gears mesh smoothly.
- all hypocycloid components rotate freely. See Hypocycloid Tuning in Tips + Tactics.
- stainless steel rods and tubes and aluminum tubes rotate freely inside their mating brass tubes.
- the Extension Spring is properly installed.
- an appropriate mass is used for the counterweight. See Weight of the Counterweight in Tips + Tactics.
- all linkages can move freely without binding.

Type	Description	Qty	Type	Description	Qty	Type	Description	Qty
Aluminum Tube	A Tube 11/32" Cored	1	Plywood 1/8"	Front fipper	2	Plywood 1/2"	Counterweight Arm	
Aluminum Tube	A Tube 1/2"	8	Plywood 1/8"	Gear Link D	1	Plywood 1/2"	Front Filiper Beam	
Aluminum Tube	A Tube $5 / 8{ }^{\prime \prime}$	1	Plywood 1/8"	Head Cam Spacer	1	Prywood 1/2"	Front Fipper Link A	2
Aluminum Tube	A Tube 3 3/4"	4	Plywood 1/8"	Head Gear Spacer	1	Plywood 1/2"	Front Flipper Mount Left	1
Aluminum Tube	A Tube 7/7"	8	Plywood 1/8"	Peau Spacer Thin	1	Plywood 1/2"	Front filiper Mount Right	1
Aluminum Tube	A Tube 1-3/16"	1	Prywood 1/8"	Rear Filiper	2	Prywood 1/2"	Front Flipper Bearing Block Left	
Aluminum Tube	A Tube 1-1/4"	2	Plywood 1/8"	Rear fliper Cam Follower Space		Prywood 1/2"	Front Flipper Bearing Block Right	
Aluminum Tube	A Tube 1-1/4" Pivot	2	Plywood 1/8"	Shell Spacer A	2	Prywood 1/2"	Gear A Spacer	
Aluminum Tube	A Tube $1-5 / 16^{\prime \prime}$	1	Plywood 1/8"	Shell Spacer B	2	Plywood 1/2"	Gear BC Spacer	2
Aluminum Tube	A Tube $1-1 / 2^{\prime \prime}$					Plywood 1/23	Gear G	
Aluminum Tube	A Tube 2 2-3/8"	1	Prywood 1/4"		2	Prywood $1 / 2^{\prime \prime}$	Gear Link A Spacer	1
Aluminum Tube	A Tube 2-1/2" A Tube $2-7 / 8^{\prime \prime}$	1	Plywood 1/4"	$\begin{aligned} & \text { Front Fiipper Link B } \\ & \text { Front Flipper Link C } \end{aligned}$	${ }_{2}^{2}$	(elswood 1/2"	Gear Link B ${ }_{\text {Head Gear Link }}$	
Aluminum Tube	A Tube $3^{\prime \prime}$	1	Plywood 1/4"	Front filipper Support Left	1	Plywood 1/2"	Hypocycloid AB Cam	1
Aluminum Tube	A Tube $3-3 / 8{ }^{\prime \prime}$	6	Plywood 1/4"	Front Filiper Support Right	1	Prywood 1/2"	Hypocycloid Gear C Cam	1
Aluminum Tube	A Tube $3-1 / 2^{\prime \prime}$	1	Plywood 1/4"	Gear B Spacer Thin	1	Plywood $1 / 2^{\prime \prime}$	Lift Cam	1
Aluminum Tube	A Tube $3-5 / 8{ }^{\prime \prime}$	1	Plywood 1/4"	Gear EF Spacer	1	Plywood 1/2"	Peau Link Right B	1
Aluminum Tube	A Tube $5-1 / 2^{\prime \prime}$	1	Plywood 1/4"	Gear	1	Plywood $1 / 2^{\prime \prime}$	Pivot Block	2
Aluminum Tube	A Tube $6-7 / 88^{\prime \prime}$	2	Prywood 1/4"	Gear Link A	1	Plywood 1/2"	Reara Fipper Mount Left	1
Brass Tube	B Tube $3 / 32^{\prime \prime} \times 1 / 4^{\prime \prime}$		${ }^{\text {Prewood }} 11 / 4^{\prime \prime}$	Gear Link C	1	Plywood 1/2"	Rear Fipper Mount Right Shoulder Pivot	1
Brass Tube	B Tube $3 / 32^{\prime \prime} \times 3 / 4^{\prime \prime}$	1	Plywood 1/4"	Head Cam Follower	1	Plywood 1/2"	Tilt Cam	1
			Plywood 1/4"	Head Cam Follower Spacer	1	Plywood 1/2"	Weight Support	1
Srass $\begin{aligned} & \text { Sube } \\ & \text { Brass Tube }\end{aligned}$	B Tube 5/32 $\times 1 / 1 / 10^{\prime \prime}$	2	Prywood $114^{\prime \prime}$	Head D Head Gear	1	Subassembly	Cam Stack Asm	
Brass Tube	8 Tube 5/32" $\times 1$ 1"	1	Plywood 1/4"	Head Spacer A	1	Subassembly	Frame AB Asm	1
Brass Tube	B Tube 5/32" $\times 1-1 / 1 / 6^{\prime \prime}$	1	Plywood 1/4"	Head Spacer B	1	Subassembly	Frame CD Asm	1
			Plywood 1/4"	Hypocycloid Gear A	1	Subassembly	Front Fiipper Beam Asm	1
Brass Tube	B Tube $9 / 32^{\prime \prime} \times 1 / 8^{\prime \prime}$	2	Plywood 1/4"	Hypocycloid Gear C	1	Subassembly	Front fipper Left Asm	1
Brass Tube	B Tube $9 / 33^{\prime \prime} \times 1 / 4^{\prime \prime}$	24	Plywood 1/4"	Moving Frame A	1	Subassembly	Front filiper Link A Left Asm	
俍 $\begin{aligned} & \text { Brass Tube } \\ & \text { Brass Tube }\end{aligned}$		13	Prywood $114^{\prime \prime}$	Moving Frame B	1	Subassembly	Front Flipper Link A A Right Asm Front	1
Brass Tube	B Tube $9 / 32^{\prime \prime} \times 1 / 2^{\prime \prime}$	7	Plywood 1/4"	Peau Link Left G	1	Subassembly	Front fliperer Link B Right Asm	1
Brass Tube	B Tube $9 / 32^{\prime \prime} \times 5 / 8^{\prime \prime}$	3	Plywood 1/4"	Peau Link Right Left C	${ }^{2}$	Subassembly	Front Fipper Link C Asm	2
Brass Tube	B Tube $9 / 33^{\prime \prime} \times 3 / 44^{\prime \prime}$	${ }_{1}$	Plywood 1/4"	Peau Link Right Left D	${ }_{3}$	Subassembly	Front fipper Right Asm	1
Brass Tube	B Tube $9 / 32^{\prime \prime} \times 7 / 8^{\prime \prime}$	1	Plywood 1/4"	Peau Link Right Left F	${ }^{2}$	Subassembly	Gear B Asm	1
Brass Tube	B Tube $9 / 323 " \times^{\prime \prime} \times 1{ }^{\prime \prime}$	1	Plywood 1/4"	Peau Link Right A1	1	Subassembly	Gear C Asm	1
Brass Tube	B Tube 9/32" $\times 1-7 / 16^{\prime \prime}$	4	Plywood 1/4"	Peau Link Right A2	1	Subassembly	Gear DAsm	1
Brass Tube Brass Tube	B Tube $9 / 32^{\prime \prime} \times 1-7 / 8^{\prime \prime}$ B Tube $9 / 32^{\prime \prime} \times 3-5 / 8^{\prime \prime}$	1	Plywood 1/4"	Peau Link R Right A3 Peau Link Right B Support	1	Subassembly	${ }_{\text {Gear EF Asm }}^{\text {Gear }}$ Asm	
			Plywood 1/4"	Peau Link Right E1	1	Subassembly	Gear Link A Asm	
Stainless Steel Tube	S Tube 1-1/16"	1	Plywood 1/4"	Peau Link Right E2	1	Subassembly	Gear Link B Asm	
Stainless Steel Tube	S Sube 1-3/8"	2	Plywood 1/4"	Peau Link Right G1 Peau Link R Pight G2	1	Subassembly	Gear Link CD Asm	1
			Plywood 1/4"	Peau Spacer Thick	1	Subassembly	Head Asm	
Stainless Steel Rod	Rod 1/16" 7 7/16"	10	Plywood 1/4"	Rear flipper Cam Follower		Subassembly	Head Cam Follower Asm	
Stainess Steel Rod	Rod $7116^{\prime \prime} \times 2 / 58^{\prime \prime}$ $\operatorname{Rod} 1 / 16^{\prime \prime} \times 3 / 4^{\prime \prime}$	${ }_{2}^{44}$	${ }^{\text {Premwood }}$ Pli4"	Shell ${ }^{\text {S }}$	2	Subassembly	Head Gear Asm Hypocyloid AB Cam Asm	
Stainless Stel Rod	Rod 1/16" $13 / 16^{\prime \prime}$	2	Plywood 1/4"	Shell C	2	Subassembly	Hypocycloid Gear Asm	
Stainless Steel Rod	Rod 11/16"x $\times 7 / 88^{\prime \prime}$	4	Plywood 1/4"	Shell D Left	1	Subassembly	Litt Cam Asm	
Stainless Steel Rod	Rod 1/16" ${ }^{\text {P }}$ +5/16"	2	Prywood 1/4"	Shell D Right	1	Subassembly	Lower Frame A Asm	1
Stainless Steel Rod	Rod 1/16" 1 1-1/4"		Plywood 1/4" Plywood 11/	Shell Front Shell Rear	1	Subassembly Subassembly	Lower Frame B Asm Moving Frame Asm	
Stainless Stel Rod	Rod 1/8" $\times 2-3 / 88^{\prime \prime}$	2	Plywood 1/4"	Upper Frame B	1	Subassembly	Moving Frame Asm	
Stainless Steel Rod	Rod 1/8" $\times 4-1 / 8^{\prime \prime}$	1				Subassembly	Moving Frame B Asm	
Steelstanoses Steelirase	Counterweight	1	Prywood $3 / 88^{\prime \prime}$	${ }^{\text {Base }}$ Crank Wheel	1	Subassembly	Peau Link Left A Asm	
Stersamess imeinas	,		Plywood $3 / 8{ }^{\text {" }}$	Front Filiperer Link Mount	2	Subassembly	Peau Link Left C Asm	
Hardware	Bearing	10	Plywood $3 / 88^{\prime \prime}$	Gear A	1	Subassembly	Peau Link Left G Asm	
Hardware	Extension Spring	1	Plywood 3/88"	Gear B	1	Subassembly	Peau Link Riont Left D Asm	3
Hardware Hardware	LSHCS 8 8-32 $\times 1 / 4^{\prime \prime}$	34 14	${ }^{\text {Plywood } 3 / 88^{\prime \prime}}$	Gear C Gear D	1	Subassembly Subassembly	Peau Link Right Left F Asm Peau Link Right A Asm	
Hardware	LSHCS $8.32 \times 1 / 2^{\prime \prime}$	20	Plywood $3 / 8{ }^{\text {" }}$	Gear E	1	Subassembly	Peau Link Right B Asm	1
Hardware	LSHCS $8.32 \times 5 / 8^{\prime \prime}$	${ }^{13}$	Plywood 3/8"	Gear H	1	Subassembly	Peau Link Right C Asm	
Hardware	LSHCS 8 -32 $\times 3 / 4^{\prime \prime}$	5	Prywood $3 / 88^{\prime \prime}$	Gear 1	1	Subassembly	Peau Link Right EAsm	
Hardware	Magnet Needle Bearing	${ }_{7}^{4}$	Prywood 3/88"	Gear Link E Spacer	1	Subassembly	Peau Link Right G Asm	
Hardware	Rod End	2	Plywood $3 / 8{ }^{\text {" }}$	Gear Link F	1	Subassembly	Peaucellier Linkage Left Asm	
Hardware	Screw \#2 x 3/8"	10	Plywood 3/8"	Head B	1	Subassembly	Peaucellie Linkage Right Asm	1
Hardware	Screw \#2 $\times 1 / 2^{\prime \prime}$	50	Prywood 3/88"	Head C	1	Subassembly	Pivot Link Asm	2
Hardware	Screw \#2 $\times 5 / 88^{\prime \prime}$	52	Prywood 3/8"	Head Cam	1	Subassembly	Pivoting Flipper Left Asm	
Hardware	Screw \#2 $\times 3 / 4$ "	14	Plywood 3/8"	Hypocyclolid Gear B	1	Subassembly	Pivoting Flipper Right Asm	
Hardware	Set Screw $8.32 \times 1 / 4^{\prime \prime}$	19	Prywood 3/8"	Lower Frame A	1	Subassembly	Rear filiper Left Asm	1
	Whaster Colar $1 / 4^{\prime \prime}$	${ }_{5}^{4}$		Lowerf Frame B	1	Subassembly	Rear Fipper Right Asm	1
Hardware	Washer \#8	50	Plywood 3/8"	Lower Frame D	1	Subassembly	Shoulder Pivot Asm	2
			Plywood 3/8"	Moving Frame B Support Peau link Lett	1	Subasembly	Upper Frame Asm	
			Plywood ${ }^{\text {Prem }}$	Peau Link Left B	1	Subassembly	Upeer rrame A Asm	
			Plywood $3 / 8{ }^{\text {" }}$	Rear Shell Connector Left	1			
			Plywood $3 / 88^{\prime \prime}$		1	Top Level Asm	Carapace	1
			Prywood $3 / 88^{\prime \prime}$	Tail Spacer A Tail	1			
			Plywood $3 / 8{ }^{\text {a }}$	Tith thard Stop Support				
			Plywood $318{ }^{\prime \prime}$	Upper Frame A	1		© 2018 Derek	Hug

Metal

Brass Tubes, Counterweight

Description

B Tube 3/32" x 1/4"
B Tube 3/32" x $3 / 4^{\prime \prime}$
B Tube 5/32" $\times 11 / 16^{\prime \prime}$
B Tube 5/32" $\times 33 / 40^{\prime \prime}$
B Tube 5/32" x $1^{\prime \prime}$
B Tube 5/32" x 1-1/16"
B Tube 9/32" $\times 1 / 8^{\prime \prime}$
B Tube $9 / 32$ " $\times 1 / 4^{\prime \prime}$
B Tube $9 / 32^{\prime \prime} \times 5 / 16^{\prime \prime}$
B Tube 9/32" x $3 / 8^{\prime \prime}$
B Tube 9/32" x 1/2"
B Tube 9/32" x $5 / 8^{\prime \prime}$
B Tube 9/32" x $3 / 4^{\prime \prime}$
B Tube 9/32" x $7 / 8^{\prime \prime}$
B Tube $9 / 32^{\prime \prime} \times 1^{\prime \prime}$
B Tube 9/32" x 1-7/16"
B Tube 9/32" $\times 1-7 / 8^{\prime \prime}$
B Tube 9/32" x $3-5 / 8^{\prime \prime}$
Counterweight see image below

OD x L^{*}
$3 / 32$ " $\times 1 / 4^{\prime \prime} \quad 0.066$ "
$3 / 32^{\prime \prime} \times 3 / 4$ " $0.066^{\prime \prime}$
$5 / 32^{\prime \prime} \times 11 / 16^{\prime \prime} \quad 0.128^{\prime \prime}$
$0.128^{\prime \prime}$
$0.128^{\prime \prime}$
$\begin{array}{ll}5 / 32 " \times 1 " & 0.128^{\prime \prime} \\ 5 / 32 " \times 1-1 / 16 " & 0.128^{\prime \prime}\end{array}$
$9 / 32^{\prime \prime} \times 1 / 8^{\prime \prime} \quad 0.253^{\prime \prime} \quad 2$
$9 / 32^{\prime \prime} \times 1 / 4^{\prime \prime} \quad 0.253^{\prime \prime} \quad 24$
9/32" $\times 5 / 16 " 1$
9/32" $\times 3 / 8^{\prime \prime} \quad 0.253^{\prime \prime} 13$
$9 / 32^{\prime \prime} \times 1 / 2^{\prime \prime} \quad 0.253^{\prime \prime} \quad 7$
$9 / 32^{\prime \prime} \times 5 / 8^{\prime \prime} \quad 0.253^{\prime \prime} \quad 3$
$9 / 32^{\prime \prime} \times 3 / 4^{\prime \prime} \quad 0.253^{\prime \prime} \quad 2$
9/32" $\times 7 / 8^{\prime \prime} \quad 0.253^{\prime \prime} 1$
$9 / 32^{\prime \prime} \times 1^{\prime \prime} \quad 0.253^{\prime \prime} 1$
$9 / 32^{\prime \prime} \times 1-7 / 16^{\prime \prime} \quad 0.253^{\prime \prime} \quad 4$
$9 / 32^{\prime \prime} \times 1-7 / 8^{\prime \prime} \quad 0.253^{\prime \prime} 1$
$9 / 32^{\prime \prime} \times 3-5 / 8^{\prime \prime} \quad 0.253^{\prime \prime} 1$
$3 " \times X^{\prime \prime}$

Qty
6
1

- 1

2
1
1

2

74

McMaster Carr P/N **
8859K18

8859K21

8859K25

Steel: 7786T36
Brass: 8953K511
Stainless Steel: 8984K71

[^0]| Description | OD $\times L^{*}$ | ID | Tap** | Qty | McMaster Carr P/N *** |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A Tube 11/32" Cored | $1 / 4^{\prime \prime} \times 11 / 32^{\prime \prime}$ | drill to 11/64" | None | 1 | 89965K23 |
| A Tube 1/2" | $1 / 4$ " $\times 1 / 2^{\prime \prime}$ | 0.120 " | Thru | 8 | |
| A Tube 5/8" | $1 / 4 " \times 5 / 8$ " | $0.120 "$ | None | 1 | |
| A Tube 3/4" | $1 / 4 " \times 3 / 4$ " | 0.120 " | Thru | 4 | |
| A Tube 7/8" | $1 / 4^{\prime \prime} \times 7 / 8^{\prime \prime}$ | $0.120 "$ | Both Sides | 8 | |
| A Tube 1-3/16" | $1 / 4 " \times 1-3 / 16^{\prime \prime}$ | 0.120 " | One Side | 1 | |
| A Tube 1-1/4" | $1 / 4 " \times 1-1 / 4^{\prime \prime}$ | 0.120 " | Both Sides | 2 | |
| A Tube 1-1/4" Pivot | $1 / 4{ }^{\prime \prime} \times 1-1 / 4^{\prime \prime}$ | 0.120 " | One Side | 2 | |
| A Tube 1-5/16" | $1 / 4^{\prime \prime} \times 1-5 / 16^{\prime \prime}$ | $0.120 "$ | Both Sides | 1 | |
| A Tube 1-1/2" | $1 / 4^{\prime \prime} \times 1-1 / 2^{\prime \prime}$ | $0.120 "$ | Both Sides | 3 | |
| A Tube 2-3/8" | $1 / 4{ }^{\prime \prime} \times 2-3 / 8{ }^{\prime \prime}$ | 0.120 " | Both Sides | 1 | |
| A Tube 2-1/2" | $1 / 4 " \times 2-1 / 2^{\prime \prime}$ | $0.120 "$ | Both Sides | 1 | |
| A Tube 2-7/8" | $1 / 4{ }^{\prime \prime} \times 2-7 / 8^{\prime \prime}$ | 0.120 " | Both Sides | 1 | |
| A Tube 3" | $1 / 4 " \times 3$ " | 0.120 " | Both Sides | 1 | |
| A Tube 3-3/8" | $1 / 4{ }^{\prime \prime} \times 3-3 / 8{ }^{\prime \prime}$ | 0.120 " | Both Sides | 6 | |
| A Tube 3-1/2" | $1 / 4{ }^{\prime \prime} \times 3-1 / 2^{\prime \prime}$ | $0.120 "$ | None | 1 | |
| A Tube 3-5/8" | $1 / 4 " \times 3-5 / 8{ }^{\prime \prime}$ | 0.120 " | Both Sides | 1 | |
| A Tube 5-1/2" | $1 / 4^{\prime \prime} \times 5-1 / 2^{\prime \prime}$ | $0.120^{\prime \prime}$ | Both Sides | 1 | |
| A Tube 6-7/8" | $1 / 4 " \times 6-7 / 8^{\prime \prime}$ | $0.12{ }^{\prime \prime}$ | Both Sides | 2 | |
| | \qquad - Tap this side for 8-32 thread. Minimum thread depth 1/2"
 $0.125^{\prime \prime}$ | | | | |

ut, grind, or file the flats.
Flats Width: 0.25"
Flats Depth: 0.02" - 0.03"
Cut flats when assembling parts; dimensions may vary.

OD outer diameter ID
L length

* Due to variations in plywood thicknesses, required tube lengths may vary.
** When tapping, expand 0.120 " tube ID with a \#29 drill bit and then tap for 8-32 thread. Minimum thread depth: 3/8".
*** Part numbers referenced are from www.mcmaster.com.

Metal

Stainless Steel

Description	ODx L^{*}	ID	Tap**	Qty	McMaster Carr P/N ***
S Tube 1-1/16"	$1 / 4 " \times 1-1 / 16 "$	$0.120 "$	Both Sides	1	89895K726
S Tube 1-3/8"	$1 / 4 " \times 1-3 / 8 "$	$0.120 "$	Both Sides	1	
S Tube 2-1/8"	$1 / 4 " \times 2-1 / 8^{\prime \prime}$	0.120"	One Side	2	
					8908K64
Rod 1/16" $\times 7 / 16^{\prime \prime}$	1/16" $\times 7 / 16^{\prime \prime}$	-	-	10	90145A418****
Rod 1/16" $\times 5 / 8^{\prime \prime}$	$1 / 16^{\prime \prime} \times 5 / 8 "$	-	-	44	90145A421****
Rod 1/16" $\times 3 / 4$ "	$1 / 16^{\prime \prime} \times 3 / 4 "$	-	-	2	90145A422****
Rod $1 / 16^{\prime \prime} \times 13 / 16^{\prime \prime}$	$1 / 16^{\prime \prime} \times 13 / 16^{\prime \prime}$	-	-	2	
Rod 1/16" $\times 7 / 8$ "	1/16" $\times 7 / 8$ "	-	-	4	90145A424****
Rod 1/16" $\times 15 / 16^{\prime \prime}$	$1 / 16^{\prime \prime} \times 15 / 16^{\prime \prime}$	-	-	2	
Rod $1 / 16^{\prime \prime} \times 1-1 / 4^{\prime \prime}$	$1 / 16^{\prime \prime} \times 1-1 / 4 "$	-	-	1	
Rod 1/8" $\times 2-3 / 8^{\prime \prime}$	$1 / 8 " \times 2-3 / 8 "$	-	-	2	8984K2
Rod 1/8" $\times 4-1 / 8^{\prime \prime}$	$1 / 8 \prime \times 4-1 / 8^{\prime \prime}$	-	-	1	

Cut, grind, or file the flats.
Flats Width: $0.25^{\prime \prime}$
Flats Depth: 0.02" - 0.03"

ID

OD outer diameter
ID inner diameter
L length

* Due to variations in plywood thicknesses, required tube lengths may vary.
** Expand 0.120 " tube ID with a \#29 drill bit and then tap for 8-32 thread. Minimum thread depth: 3/8". Cobalt Steel drill bit and tap required.
*** Part numbers referenced are from www.mcmaster.com.
**** To save the time of cutting these Rods manually, these parst are available as pre-cut dowel pins.

Rear Flipper Mount Left 1/2 $1 \times 9 / 64$ (perpendicular to $1 / 8^{\prime \prime}$ hole) $2 \times 1 / 16 \downarrow 1 / 4$ (perpendicular to $20^{\circ} \mathrm{cut}$)

Rear Flipper Mount Right (back) 1/2
1x 9/64 (perpendicular to 1/8" hole) 2x 1/16Ј1/4 (perpendicular to 20° cut)

Cut a 20° angle into Rear Flipper Mount Right and Rear Flipper Mount Left as shown. Pay close attention to each hole's orientation.

Tail Spacer A (back) 3/8

Tail Spacer B 3/8

Subassemblies

Steps 1, 2, 3, 4, 5

Subassemblies

Steps 24, 25

Peau Link Left B Asm

1	Peau Link Left B	$1 \times$
2	B Tube 9/32" $\times 3 / 8^{\prime \prime}$	$3 x$
3	S Tube 1-1/16"	$1 \times$
4	Needle Bearing	$1 \times$
5	Washer \#8	$2 x$
6	LSHCS 8-32 $\times 1 / 4$ "	$2 x$

Needle bearing must spin freely on the S Tube and must not bind on the B Tube.

Peau Link Right B Asm

Peau Link Right B	1 x
Peau Link Right B Support	1 x
Peau Spacer Thick	1 x
B Tube 9/32" $\times 5 / 16^{\prime \prime}$	1 x
B Tube 9/32" $\times 1 / 2^{\prime \prime}$	1 x
B Tube 9/32" $\times 3 / 4$ "	1x
Screw \#2 x 1/2"	2 x
S Tube 1-3/8"	1x
Needle Bearing	1 x
Washer \#8	2 x
LSHCS 8-32 x 1/4"	2 x

Needle bearing must spin freely on the S Tube and must not bind on the B Tube.

Subassemblies

Steps 26, 27

Peaucellier Linkage Left Asm

1	Peau Link Left A Asm	$1 \times$
2	Peau Link Left B Asm	$1 x$
3	Peau Link Right Left D Asm	$2 x$
4	Peau Link Left C Asm	$1 x$
5	Peau Link Left G Asm	$1 \times$
6	Peau Link Right Left F Asm	$1 \times$
7	A Tube 3/4"	$2 x$
8	A Tube 7/8"	$1 x$
9	Washer \#8	$6 x$
10	LSHCS 8-32 $\times 1 / 4$ "	$6 x$

Links must pivot freely around A Tubes and must not bind. Note that links will not stay in place until they are installed in the Top Level Assembly.

Subassemblies

Upper Frame Asm

1	Upper Frame	$1 x$
2	Bearing	$1 x$
3	Rod $1 / 16^{\prime \prime} \times 5 / 8^{\prime \prime}$	$28 x$

Upper Frame B Asm

1	Upper Frame B	$1 x$
2	Bearing	$1 x$

Subassemblies

Step 40

Subassemblies

Steps 49, 50

Moving Frame A Asm

1	Moving Frame A	$1 x$
2	Bearing	$2 x$
3	A Tube 1/2"	$6 x$
4	LSHCS 8-32 x 3/8"	$6 x$

1	Frame C	$1 x$
2	Frame D	$1 x$
3	B Tube 9/32" $\times 3 / 8 "$	$2 x$
4	A Tube 1-1/2"	$3 x$
5	LSHCS 8-32 x 5/8"	$6 x$
6	Bearing	$1 x$

Subassemblies

Step 51

Top Level Assembly

Step 2

1	A Tube 5-1/2"	$1 \times$
2	Gear B Asm	$1 \times$
3	Gear Link A Asm	$1 \times$
4	Gear C Asm	$1 \times$
5	Gear Link B Asm	$1 \times$
6	LSHCS 8-32 x 1/4"	$2 x$
7	Washer \#8	$2 x$
8	Set Screw 8-32 x 1/4"	$2 x$

Note that links will not stay in place until
Top Level Assembly Step 6.

Top Level Assembly

Step 7

Front Flipper Link A Left Asm	$1 \times$
Front Flipper Link A Right Asm	$1 x$
Front Flipper Link B Left Asm	$1 x$
Front Flipper Link B Right Asm	$1 x$
Front Flipper Link C Asm	$2 x$
Shaft Collar	$4 x$
Set Screw $8-32 \times 1 / 4^{\prime \prime}$	$2 x$

Ensure Magnets are oriented such that the links attract to each other.

Top Level Assembly

Step 8

Shell A Asm	$1 x$
Shell Spacer A	$2 x$
Shell Spacer B	$2 x$
Screw \#2 $5 / 8^{\prime \prime}$	$8 x$

Top Level Assembly

Step 13
1 Counterweight $\quad 1 \times$

After completing the Carapace Top Level Assembly, see Mechanism Timing in Tips + Tactics to ensure that all of Carapace's motions are accurate to the design intent.

[^0]: * Due to variations in plywood thicknesses, required tube lengths may vary.

 See Plywood Thickness Compensation in Tips + Tactics.
 ** Part numbers referenced are from www.mcmaster.com.

